Doxycycline induces membrane expression of VE-cadherin on endothelial cells and prevents vascular hyperpermeability.

نویسندگان

  • Ofer Fainaru
  • Irit Adini
  • Ofra Benny
  • Lauren Bazinet
  • Elke Pravda
  • Robert D'Amato
  • Judah Folkman
چکیده

The endothelium lining blood vessels serves as a barrier against vascular hyperpermeability, and its maintenance is critical to organ health. Inflammatory mediators evoke tissue edema by disrupting the expression of membrane junctional proteins, which mediate binding between endothelial cell membranes. Endothelial cell-cell junctions form a diffusion barrier between the intravascular and interstitial space. To prevent the morbidity and mortality caused by exaggerated vascular permeability associated with pathological states (e.g., inflammatory and hypersensitivity disorders, pulmonary edema, traumatic lung injury, cerebral edema resulting from stroke, and others), it is important to develop therapeutic approaches to stabilize these interendothelial junctions. Vascular endothelial growth factor (VEGF), a potent proangiogenic cytokine, was first described as vascular permeability factor (VPF). Doxycycline, a tetracycline derivative, has been shown to inhibit angiogenesis in both humans and animal models. We now report that oral doxycycline prevents VPF/VEGF-induced vascular permeability, interleukin-2-induced pulmonary edema, and delayed-type hypersensitivity (DTH) in mice. Remarkably, doxycycline also inhibits tumor growth and tumor-associated vascular hyperpermeability. Finally, we show that doxycycline targets the adherens junction in vascular endothelial cells by inducing the total amount of VE-cadherin expression while decreasing the degree of its phosphorylation. The potential of doxycyline as a therapeutic inhibitor of vascular hyperpermeability in human clinical conditions is promising and warrants further studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo

Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast...

متن کامل

Different Contributions of Clathrin- and Caveolae-Mediated Endocytosis of Vascular Endothelial Cadherin to Lipopolysaccharide-Induced Vascular Hyperpermeability

Vascular hyperpermeability induced by lipopolysaccharide (LPS) is a common pathogenic process in cases of severe trauma and sepsis. Vascular endothelial cadherin (VE-cad) is a key regulatory molecule involved in this process, although the detailed mechanism through which this molecule acts remains unclear. We assessed the role of clathrin-mediated and caveolae-mediated endocytosis of VE-cad in ...

متن کامل

Protection by simvastatin on hyperglycemia-induced endothelial dysfunction through inhibiting NLRP3 inflammasomes

Recent studies have demonstrated that NLRP3 inflammasome complex acts as pivotal elements to initiate inflammatory responses and plays an important role in the dysfunction of cardiovascular complications. Meanwhile, simvastatin prevents vascular endothelial dysfunction from inflammasome invasion contributing to reduce cardiovascular risk. However, Whether or not the simvastatin improves vascula...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis

The junctional membrane protein vascular endothelial (VE)–cadherin mediates contact inhibition of growth and inhibits apoptosis of endothelial cells. In this article we show that VE-cadherin induces expression of growth arrest–specific 1 (Gas1), an integral membrane protein upregulated in nonproliferating cells. By comparing syngenic endothelial cell lines, we found that Gas1 mRNA was increased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2008